Faculty of Computer Science, Software Technology Group

A Case Study for Workflow-based Automation in the Internet of Things

IoT-ASAP @ ICSA 2018

Ronny Seiger, Steffen Huber, Uwe Aßmann

Smart Home Example Processes

Morning Routine Process

Emergency Process

Challenges/Research Issues

- Modelling and execution of workflows/processes in IoT
- → describe interactions of IoT elements on business process level
 - Heterogeneous devices
 - Complex sensor networks
 - Resource-constraint, mobile or stationary actuators
 - Humans
 - Smart objects
 - Software services and applications
- Resilient workflow execution
- → detect and handle errors and unanticipated situations
 - Interactions with the physical world
 - Mutual influence between physical and cyber world (CPS)

- Complex event processing, Web service invocations, Human Tasks
- Dynamic service selection (Ontology + Semantic Queries): SAL² [4]
- Self-adaptive workflow execution: Feedback Service³ [5,6]
 - Goals define success or error criteria
 - Analysis of external sensor data
 - Process adaptation in case of errors
- (1) https://github.com/IoTUDresden/proteus
- (2) https://github.com/IoTUDresden/openhab2-addons
- (3) https://github.com/IoTUDresden/feedback-service

Smart Home Case Study

- Real world case study based on scenario processes
 - Morning Routine process and Emergency process
 - Coffee process and Robot Navigation process
- Controlled lab experiments
 - 1 control computer (Ubuntu Linux) with PROtEUS WfMS + associated services, middleware (OpenHAB)
 - Sensors and actutators from various vendors (Homematic, Tinkerforge, ...)
 - Turtlebot 2 robots, Android tablets
 - BeSpoon tracking system

Morning Routine Process

- Dynamic sensor selection
 - Position
- RESTful services
 - Send robot to target
 - Trigger light and coffee
- Event processing
 - Robot arrived
- Human Task

Results: Morning Routine Process

ID	Process Step	Duration (in ms)
P1	GetPositionForPaperBoy	34
P2	GetPositionForReader	42
Р3	MoveRobotToPaperBoy	35
P4	WaitForRobotToArriveAtPaperBoy	23631
P5	PlacePaperOnTurtle	13218
Р6	MoveRobotToReader	27
Р7	WaitForRobotToArriveAtReader	50859
P8	SwitchOnLight	13
P9	BrewCoffee	15586
	MorningRoutine	103.334

- Fast virtual process executions (near real-time, < 100 ms)
- Cyber-physical process steps much longer
- Asynchronous service invocations
- → require event listeners

Emergency Process

30.04.2018

Results: Emergency Process

ID	Process Step	Duration (in ms)
P1	HealthChanged	27916
P2	ShowQuestionOnScreens	181
Р3	ShowQuestionOnDisplays	47
P4	SwitchLcdBacklightsOn	57
P5	AllLightsOn	111
P6	AsklfHumanOk	15046
Р7	OR	7
P8	ShowCallEmergency	131
Р9	ShowHelpIsCalled	55
P10	WaitForNfc	21213
P11	OpenDoor	20
	Emergency	64389

Video: Emergency Process

Coffee Process

- Process invokes coffee brewing service
- Use MAPE-K loop to verify process execution
 - Monitor, Analyze, Plan, Execute
- External sensor (infrared) + Feedback Service
- Goal defines success and error criteria

Results: Coffee Process

ID	Process Step	Duration (in ms)
P1	MakeCoffee	114.940
P2	IF	38
P3	CoffeeSuccess	35645
P4	OR	9
	CoffeeProcess	150.632

METHE						FB Service
Iterations (#)	_	148	_	_	148	1
Iterations (#) Duration (ø in ms)	-	6	_	_	1023	112.135

- Link external sensor data to workflow execution
- Verification of process execution
- Fast execution times

Robot Navigation Process

- Process invokes robot service to drive to a target
- Robot's internal SLAM localization prone to errors
- External sensor data (BeSpoon localization) to verify correct position
- Verification and compensation planning in MAPE-K loop (Goal)
 - Success: robot reached specified coordinates and publishes "arrived" event
 - Error: robot publishes "arrived" event and has not reached coordinates
- Error: Planner decides to cancel MAPE-loop and reports error → Process loop is repeated → robot is re-instructed

Results: Robot Navigation Process

Process Step

P3

P4

GetPositionOfHuman

MoveTheTurtle (1)

MoveTheTurtle (2)

MoveTheTurtle (3)

MoveTheTurtle (4)

MoveTurtleAndCheckForSuccess

ID	Process Step	#M	#A	#P	#E	Duration (in ms)
P2	MoveTheTurtle (1)	_	17	1	1	21084
Р3	MoveTheTurtle (2)	_	6	1	1	7202
P4	MoveTheTurtle (3)	_	9	1	1	10028
P5	MoveTheTurtle (4)	_	6	0	0	7333

RobotNavigation 49357

P1 P2 P3 P4 P5

MoveTurtleAndCheckForSuccess

MoveTurtleAndCheckForSuccess

16 24 32 40 48 56

Time in Seconds

- Process verification with external sensors
- Detect and remedy errors
- Simple planning → repeat process step
- Extensible strategies (replace resources)

Duration (in ms)

1079

22924

7530

10065

7759

48278

- Workflows for automation in IoT
 → on top of sensors, actuators,
 humans, objects, services
- Active and reactive interactions on the business process level
- Smart home case study
 → real world experiments
- Fast virtual computations
- Long running physical executions
- Sensor data ←→ workflow execution
 → execution verification
- MAPE-K loop-based self-management for resilient processes

Questions?

- [1] Modelling Complex and Flexible Processes for Smart Cyber-Physical Environments. Journal of Computational Science (JOCS), 2014. ISSN 1877-7503, Ronny Seiger, Christine Keller, Florian Niebling, Thomas Schlegel
- [2] PROtEUS: An Integrated System for Process Execution in Cyber-physical Systems. 16th International Conference on Business Process Modeling, Development, and Support (BPMDS), 2015, Stockholm, Sweden, June 8-9, 2015.

Ronny Seiger, Steffen Huber, Thomas Schlegel

[3] Towards an Execution System for Self-healing Workflows in Cyber-physical Systems. Journal on Software and Systems Modeling (SoSyM), Special Issue for BPMDS 2015. Ronny Seiger, Steffen Huber, Thomas Schlegel

Steffen Huber, Ronny Seiger, André Kühnert, Thomas Schlegel

[4] Using Semantic Queries to Enable Dynamic Service Invocation for Processes in the Internet of Things. 10th IEEE Conference on Semantic Computing (ICSC), Laguna Hills, USA, February 3-5, 2016.

Steffen Huber, Ronny Seiger, André Kühnert, Thomas Schlegel

[5] Enabling Self-adaptive Workflows for Cyber-physical Systems. 17th International Conference on Business Process Modeling, Development, and Support (BPMDS), 2016, Ljubljana, Slovenia.

Ronny Seiger, Steffen Huber, Peter Heisig, Uwe Aßmann

[6] Toward a framework for self-adaptive workflows in cyber-physical systems. International Journal on Software and Systems Modeling (SoSyM) Ronny Seiger, Steffen Huber, Peter Heisig, Uwe Aßmann