IOWA STATE UNIVERSITY

Teaching Software Architecture Process to Undergraduate Students: A Case Study

Lotfi ben Othmane

Iowa State University

2nd International Workshop on Engineering IoT Systems: Architectures, Services, Applications, and Platforms Seattle, April 30, 2018

Challenges of Teaching Software Architecture

Characteristics of software architecture:

- Requires strong
 experience
- Fuzzy deals with unclear problems and solutions
- Applies to complex software

Characteristics of the learners (Undergrad)

- Have limited knowledge and experience
- Used to concrete concepts, precise problems and solutions
- Use simple applications

Classic Program - A Set of Topics

- 1. Overview of software architecture: what? And why?
- 2. Software architecture structure and styles
- 3. Software quality attributes
- 4. Overview of software engineering principles
- 5. Introduction to design by contract
- 6. Introduction to UML
- 7. Software reengineering
- 8. Software evolution
- 9. Design patterns
- **10**. Component based software engineering
- **11**. Model-driven languages
- 12. Architecture description languages

The students want to learn:

- How to design an architecture?
- How to evaluate an architecture?

Approach

- 1. Focus on the main topics: requirements elicitation, design, and evaluation
- 2. Use a software architecture design process
- 3. Use Smart Home (IoT) project for experimentation

Course Redesign - Structure

- Use the Attribute-Driven Design process
- Use the three case studies as examples
- Complement the book with other resources such as big up front design vs. agile
- The project is to extend a smart home application (developed by students)

Course Redesign - Topics

- 1. Overview of software architecture
- 2. Unified Modeling Language (UML)
- 3. Architecture drivers
- 4. Architecture styles, patterns, and tactics
- 5. Architecture design process
- 6. Documenting a software architecture
- 7. Architecture evaluation (ATAM)
- 8. Software security architecture
- 9. Architecture recovery

Study Design - Goals

- 1. Assess the capabilities of the students to synthesis acquired knowledge
- 2. Assess the cognitive levels of the students using Bloom taxonomy
- 3. Assess the self-confidence of the students in designing software architecture
- 4. Assess the student perceptions of the effectiveness of the course

Study Design - Preparation

- Designed a questionnaire with open-ended questions
- The students took the questionnaire in Nov. 2018
- 51 students out of 60 participated submission is anonymous
- Coding we associated used verbs with Bloom levels of cognitive levels

Results - Student Expectations

Expectation	# students
No expectations	18 (35%)
Design of architecture	<u>11 (22%)</u>
Curious about the topic	6 (12%)
Relation to another course	6 (12%)
Heavy coding	<mark>6 (12%)</mark>
Types of architecture	2 (4%)
Architectures styles	2 (4%)

IOWA STATE UNIVERSITY

.....

Results - Learning Efficiency

Question: Assume you are given a project and asked to design an architecture for it. How would you do the design?

Cognitive level	Percentage	
Creating	4%	
Evaluating	11%	
Analyzing	4%	
Applying	<mark>72%</mark>	
Understanding	9%	
Irrelevant	5 out of 51	
E.g: If you are referring to the process taught in class,		
I am not going to use it.		

Results – Differentiate Web-based vs IoTbased Projects

Aspect	# of students
Architecture drivers	30
Patterns related to the project	<mark>s 23</mark>
Architectural knowledge	17
Simplicity	5
Technology stack	3
Configuration management	1

Smart Home Projects

Examples of Architecture Drivers for IoT

Question: Would you use your system at home?

- Accuracy for facial recognition setup
- Performance for using face recognition-based authentication to unlock doors
- Performance for playing music
- Reliability for using temperature to open windows
- Reliability for smart alarm
- Reliability for smart watering
- Accuracy of motion sensors

Results – Preferred Learning Methods

Method	#of students
Group assignments	12
Individual assignments	11
Case studies	11
Reading	8
In-class group activities	7
No definitive answer	5
Quizzes	4
Drawing diagrams	4
None	3
Learn on their own	2

Results - Confidence

Level Codes	# of students
High confidence	22%
Moderate confidence	25%
Fair confidence	<mark>29%</mark>
Not confident	10%
No definite answer	14%

Effectiveness of the Course

Level Codes	# of students
Effective and above	10
Moderate	18
Not effective	12
Unknown	11

Conclusion

- Using a ADD process can help the students to reason about software architecture
- IoT-based projects could help the students to understand the value of quality attributes and architecture
- The students prefer learning software architecture using case studies and assignments
- There is a challenge to improve the confidence of the students in designing software architecture

Thank you